7 research outputs found

    A nonequilibrium extension of the Clausius heat theorem

    Full text link
    We generalize the Clausius (in)equality to overdamped mesoscopic and macroscopic diffusions in the presence of nonconservative forces. In contrast to previous frameworks, we use a decomposition scheme for heat which is based on an exact variant of the Minimum Entropy Production Principle as obtained from dynamical fluctuation theory. This new extended heat theorem holds true for arbitrary driving and does not require assumptions of local or close to equilibrium. The argument remains exactly intact for diffusing fields where the fields correspond to macroscopic profiles of interacting particles under hydrodynamic fluctuations. We also show that the change of Shannon entropy is related to the antisymmetric part under a modified time-reversal of the time-integrated entropy flux.Comment: 23 pages; v2: manuscript significantly extende

    Heat release by controlled continuous-time Markov jump processes

    Full text link
    We derive the equations governing the protocols minimizing the heat released by a continuous-time Markov jump process on a one-dimensional countable state space during a transition between assigned initial and final probability distributions in a finite time horizon. In particular, we identify the hypotheses on the transition rates under which the optimal control strategy and the probability distribution of the Markov jump problem obey a system of differential equations of Hamilton-Bellman-Jacobi-type. As the state-space mesh tends to zero, these equations converge to those satisfied by the diffusion process minimizing the heat released in the Langevin formulation of the same problem. We also show that in full analogy with the continuum case, heat minimization is equivalent to entropy production minimization. Thus, our results may be interpreted as a refined version of the second law of thermodynamics.Comment: final version, section 2.1 revised, 26 pages, 3 figure

    Hydrodynamics of DNA confined in nanoslits and nanochannels

    No full text
    corecore